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Abstract

A symmetry extension of Maxwell's rule for rigidity of frames is found. This rule subsumes and strengthens
Maxwell's 1864 rule by requiring that the internal and external degrees of freedom of a pin-jointed structure are not

only numerically equal, but are also equisymmetric. A number of special cases of Maxwell's original rule are studied
to show the improved insight that the symmetry-adapted version can give. # 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction: the algebraic rule

In 1864 James Clerk Maxwell published an algebraic rule setting out a condition for a pin-jointed
frame composed of b rigid bars and j frictionless joints to be both statically and kinematically
determinate i.e. `just sti�' (Maxwell, 1864). The number of bars needed to sti�en a three-dimensional
frame free to translate and rotate in space as a rigid body, is

b � 3jÿ 6 �1a�

The physical reasoning behind the rule is clear: each added bar links two joints and removes at most
one internal degree of freedom. It is trivial to modify Maxwell's rule for other simple cases: for a three-
dimensional frame ®xed to supports,

b � 3j; �1b�

for a two-dimensional frame free to translate and rotate in plane,
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b � 2jÿ 3; �1c�

for a frame ®xed to supports and con®ned to a plane,

b � 2j: �1d�

All four of these cases are covered by a formulation such as (1) with appropriate values of t and D:

b � tjÿ D �1�
As Maxwell himself noted, (1) is a necessary but not in general a su�cient condition for establishing

determinacy. A full account of the degrees of freedom of the frame must allow for the possibility of
states of self stress (bar tensions in the absence of external load) and mechanisms (displacements of joints
without any bar extensions). The full inventory of degrees of freedom of the frame can therefore be
written as an extended Maxwell's rule (Calladine, 1978)

bÿ tj� D � sÿm �2�

where s and m count the states of self stress and mechanisms, respectively, and can be determined by
®nding the rank of the equilibrium matrix that describes the frame in a full structural analysis
(Pellegrino and Calladine, 1986). The nature of Maxwell's rule as necessary rather than su�cient is
made clear by (2): vanishing of the LHS implies only that the numbers of mechanisms and states of self
stress are equal, not that they are both zero.

It is the purpose of the present note to point out that a more speci®c form of both Maxwell's rule,
and the extended Maxwell's rule, can be found by considering (2) and hence (1) in the light of not only
the numbers of structural components, forces and displacements of a frame, but also their symmetries.
Given the reducible representations of the bar extensions and joint displacements of a symmetric frame,
which are easily calculated by standard methods (Wilson, Decius and Cross, 1955), the algebraic
formula (2) appears as an aspect of a more general relation which can place useful limitations on
possible indeterminacies. This extension of an algebraic to a group-theoretical relation parallels recent
developments in a chemical context, where Euler's famous polyhedral theorem relating numbers of
vertices, edges and faces has been shown to have powerful symmetry counterparts which clarify the
description of molecular vibration and chemical bonding in cages (Ceulemans and Fowler, 1991; Fowler
and Ceulemans, 1995).

The symmetry extension of Maxwell's rule does not attempt to provide a complete structural
analysisÐif this is required, then the methods described by Pellegrino and Calladine (1986), or, in a
symmetry context, Kangwai and Guest (1999b), should be explored. These methods are computer-based;
the symmetry extension of Maxwell's rule is by contrast suitable for a preliminary back-of-the-envelope
calculation, more speci®c than, but in the same spirit as Maxwell's original rule. The new rule is useful,
e.g. to elucidate the symmetry-based properties of the structures described in Section 3, or to provide an
initial explanation of the paradoxical properties of the symmetric structures described in Kangwai and
Guest (1999a).

2. A symmetry version of the rule

Eqns (1) and (2) relate the total number of external and internal degrees of freedom. The aim of
this section is to ®nd a simple symmetry-adapted version of these equations, which relates the numbers
of external and internal degrees of freedom that have a particular type of symmetry. This paper outlines
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three ways of ®nding these numbers; they are progressively simpler, and the ®nal version is an easy to
use extension of Maxwell's original rule written in the language of representations.

2.1. A brute-force approach

One possible approach is the brute-force method described by Kangwai and Guest (1999b) where a
complete symmetry-adapted coordinate system is found for the entire structure. Consider, for example,
the 2D structure shown in Fig. 1. Considered in 3D, the structure has D3h, but if we consider only
motions restricted to the plane, this full point group can be replaced by its essential subgroup C3v to
shorten calculations. This structure satis®es Maxwell's rule, (1d), and hence the number of states of self-
stress and mechanisms must be equal.

Full symmetry-adapted coordinate systems were found for the example structure by Kangwai and
Guest (1999b) for both the external degrees of freedom used for representing e.g., nodal forces or
displacements, and the internal degrees of freedom used for representing e.g., bar tensions or extensions.
This analysis showed that the structure has one external and two internal degrees of freedom with the
full symmetry of the structure, corresponding to irreducible representation A1, and hence one state of
self-stress. It also showed that the structure has one external, and no internal degrees of freedom, with
the rotational, but not re¯ection, symmetry of the structure, corresponding to irreducible representation
A2, and hence one mechanism.

While this brute-force approach undoubtedly works, it gives the number of external and internal
degrees of freedom with particular symmetry as a ®nal result of the analysis, and not as a simple
preliminary calculation in the spirit of Maxwell's original rule.

2.2. An approach based on the traces of representation matrices

Consider the Cartesian coordinate system attached to the example structure in Fig. 2. Each of the
symmetry operations in the symmetry group C3v can now be written as a reducible matrix
representation. For example, rotation by 2p=3 would be written as:

Fig. 1. Pin-jointed structure in 2-dimensional space with C3v symmetry.
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Group Representation Theory shows that, had we used the correct coordinate system, all of these
representations would have had a block-diagonal form, where the blocks were made up of the
irreducible representations given in Table 1. The number of degrees of freedom of the external coordinate
system with each type of symmetry can be found by counting these blocks.

The key to making further progress is to realise that a change in coordinate system cannot change the
trace, or character of a representation matrix. The character of each of the reducible matrix
representations can be calculated from matrices such as the one above. The character for each of the
irreducible matrix representations are given in a character table such as Table 2. As can be seen, some
symmetry operations always share the same character, and this properly divides the operations into
symmetry classes. It now becomes clear how many copies of each irreducible representation must be

Table 1

A set of irreducible representations of C3v. The 1-dimensional representations A1 and A2 are unique. The two-dimensional represen-

tation E has a degree of arbitrariness, in that it depends on the choice of an orientation for the two in-plane x and y unit vectors

C3v E C3 C2
3 sa sb sc

A1 1 1 1 1 1 1

A2 1 1 1 ÿ1 ÿ1 ÿ1

E

"
1 0

0 1

# 24ÿ1=2 ÿ ���
3
p
=2���

3
p
=2 ÿ1=2

35 24 ÿ1=2 ���
3
p
=2

ÿ ���
3
p
=2 ÿ1=2

35 "
1 0

0 ÿ1

# 24 ÿ1=2 ÿ ���
3
p
=2

ÿ ���
3
p
=2 1=2

35 24ÿ1=2 ���
3
p
=2���

3
p
=2 1=2

35

Fig. 2. A cartesian coordinate system for the external space.
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present if the characters of the representations under all symmetry operations are to match. Consider,
for example, the external coordinate system shown in Fig. 2. The character of the representation under
the identity is 6, under rotations of 2p=3, 4p=3 it is 0, and under any re¯ection it is 0. These can then be
written as an array of three numbers, G�e� � f6,0,0g. Considering Table 2, it is clear that this can only
correspond to the irreducible representations G�e� � A1 � A2 � 2E � f1,1,1g � f1,1,ÿ 1g � 2� f2,ÿ
1,0g � f6,0,0g, which agrees with the dimensions found by the brute force method in Kangwai and
Guest (1999b).

A more systematic way of deriving the reduction to irreducible representations is by projection. If the
character of a reducible representation of a symmetry operation R is written wred�R�, and the
corresponding character of a given irreducible representation m is written as wm�R�, then it can be shown
that the number of times, am, that the irreducible representation Gm appears is

am � 1

g

X
R

wred�R�wm��R�

where � represents the complex conjugate, and g is the order (number of operations) of the group.
A similar method can be implemented for the internal coordinate system. A natural internal

coordinate system is shown in Fig. 3. Again, each of the symmetry operations can be written as a matrix
representation, but in this case the representations are simply permutation matrices. This makes the
characters of the representation very easy to ®ndÐit is simply the number of bars remaining unshifted
under a particular symmetry operation, as only when a bar is left in place can a 1, rather than a 0,
appear on the diagonal.

Table 2

Character table for C3v

C3v E 2C3 3sv

A1 1 1 1

A2 1 1 ÿ1
E 2 ÿ1 0

Fig. 3. A natural coordinate system for the internal space.
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The characters of the representations for the internal coordinate system are therefore G�b� � f6,0,2g.
Considering Table 2, it is clear that this must be made up of the irreducible representations G�b� � 2A1 � 2E,
which again agrees with the results of the brute-force method in Kangwai and Guest (1999b).

We are now in a position to write a ®rst attempt at a symmetry extension of Maxwell's law. For a
frame to be just sti�, the following is a necessary condition

G�e� � G�b�:
Not only must the number of external and internal degrees of freedom be equal, but so must their
symmetries. Clearly this is not satis®ed for our example structure.

While this matrix method works, there are two improvements that can be made. First, the methods
seems to require the ®nding of a representation matrix for each class of symmetry operation in order to
®nd the character of the external representations. It will be seen that this can be easily improved so that
it requires little more than the counting required for the internal case. Secondly, the current treatment
has only considered structures that are ®rmly anchored to their foundations. Maxwell's original rule was
for a body free from foundations, but to derive the symmetry equivalent requires a way of ®nding the
symmetry properties of free-body motion. Both of these problems will be solved in the next section.

2.3. A simpli®ed way of ®nding the character of representations

The representations of symmetry operations for an external coordinate system can be considered in
two parts. Firstly, there is a block permutation which switches the nodes between di�erent locations;
secondly, each of the blocks is a local (2 � 2) or (3 � 3) transformation matrix representing the e�ect of
a symmetry operation on the coordinate system for a single central point.

A contribution to the character of a representation can, therefore, be non-zero only if a node remains
unmoved by a symmetry operation. The character of the representation will then be the character of the
symmetry operation acting on the coordinate system, multiplied by the number of nodes unmoved by
the symmetry operation.

For the example structure, the permutation character of the joints is G�j � � f3,0,1g: all nodes remain
unmoved by the identity, no nodes remain unmoved by the rotations, and one node remains unmoved
by any given re¯ection. The character for the symmetry transformations of the coordinates of a single
point in 2D are G�T � � f2,ÿ 1,0g. The external degrees of freedom can therefore be written

G�e� � G� j� 
 G�T�
where 
 means a class-by-class multiplication of corresponding characters. For the example structure

G�e� � f3,0,1g 
 f2,ÿ 1,0g � f6,0,0g
as before.

The way to handle rigid body motions is now also clear. A representation of a rigid body translation
is simply the G�T � given above. In a similar way, it is possible to ®nd the characters G�R� for the rigid
body rotations, of which there is 1 in 2D, and 3 in 3D. Both G�T � and G�R� can be read o� from tables
of the point groups (Atkins, Child and Phillips, 1970).

As a simple example, consider the triangular structure shown in Fig. 4Ðthe original example
structure minus the bars connecting it to the foundation. The representation of the possible motions of
its nodes is identical to the original example structure, G�e� � A1 � A2 � 2E2, but this now includes the
rigid body motions. As calculated above, G�T � � f2,ÿ 1,0g � E, and in 2D the rigid-body rotation has
G�R� � f1,1,ÿ 1g � A2, as a rigid body rotation is preserved by the identity and rotation, but reversed
by re¯ection. Thus the external degrees of freedom, after removal of the rigid body motions are
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G�j � 
 G�T � ÿ G�T � ÿ G�R� � A1 � E. The characters of the internal coordinate system of the new
structure are G�i � � f3,0,1g � A1 � E. Thus, this structure satis®es a necessary condition for being just
sti�Ðthe external and internal degrees of freedom have the same symmetry.

We are now in a position to re-write Maxwell's eqns (1) in a symmetry adapted form. The internal
degrees of freedom must be equisymmetric with the external degrees of freedom, after the removal of
any rigid body motions. In the language of representations the direct equivalent of Maxwell's original
rule, (1a), becomes

G�b� � G� j� 
 G�T� ÿ G�T� ÿ G�R�: �3a�
Equally, it is possible to write three further equations corresponding to (1b)±(1d)

G�b� � G� j� 
 G�T� �3b�

G�b� � G� j� 
 G
ÿ
Tk
�ÿ G

ÿ
Tk
�ÿ G�R?� �3c�

G�b� � G� j� 
 G
ÿ
Tk
� �3d�

G�Tk� and G�R?� are the components of G�T � and G�R� that represent the two translations and one
rotation remaining to a body con®ned to the plane. By analogy with (1), a summary form of (3a)±(3d) is

G�b� � �G� j� 
 G�t� ÿ G�D�	 �3�

with appropriate de®nitions of G�t� and G�D�.
As with Maxwell's original rule, (3) is a necessary, but not su�cient condition for establishing

determinacy. Again, a full account of the degrees of freedom must allow for the possibility of states of
self stress, and mechanisms. The symmetry version of the extended Maxwell's rule therefore becomes

G�b� ÿ �G� j� 
 G�t� ÿ G�D�	 � G�s� ÿ G�m� �4�

where G�m� is the representation of any mechanisms, and G�s� is the representation of any states of self
stress.

Eqn (1) is revealed as the character w�E � of (3) under the identity operation, and (3) would collapse to
(1) in the absence of structural symmetry. Eqn (3) is again only a necessary condition: if it is satis®ed,
then either the frame is rigid (s � m � 0) or those mechanisms and states of self stress that do exist are
equisymmetric �G�s� � G�m��.

Eqn (3) is more restrictive than (1) in that the matching of LHS and RHS must apply block-by-block
to each irreducible representation Ga of the point group G. Thus, if the decompositions

G�b� �
X
a

baGa

Fig. 4. Free-¯oating pin-jointed structure in 2-dimensional space with C3v symmetry.
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G�j� 
 G�t� ÿ G�D� �
X
a

j 0aGa

have been calculated, a necessary condition for rigidity is ba � j 0a for all a. ba, j
0
a are the dimensions of

the blocks of a symmetry-adapted equilibrium or compatibility matrix (Kangwai and Guest, 1999b). In
any block where ba > j 0a there are at least ba ÿ j 0a states of self stress of symmetry Ga and conversely in
any block where ba<j

0
a there are at least j 0a ÿ ba mechanisms of symmetry Ga. A structure may thus obey

Maxwell's algebraic rule, (1), but be revealed as indeterminate by examination of the blocks Ga, as was
seen for the structure in Fig. 1. It can be seen that (3) is a necessary, but not su�cient, condition
because of the possibility of these blocks being rank-de®cient. Rank-de®ciency of the blocks signals the
presence of equisymmetric states of self-stress and mechanisms, as allowed in (4).

3. Examples

This section will consider a number of the examples mentioned by Calladine (1978) as special cases of
Maxwell's rule, to examine whether the new symmetry version gives improved insight into these
structures.

3.1. Unsupported planar frames

A classic problem case for Maxwell's algebraic rule is the pair of frames (a) and (b) illustrated in Fig.
5. Both have j � 6 and b � 2jÿ 3 � 9 and so nominally obey Maxwell's algebraic rule, but (a) is rigid
in the plane whereas (b) is part mechanism and part redundant.

Considering only motions in the plane, frame (a) has C2 symmetry with operations fE, C2g; the
character table for C2 is shown in Table 3. The RHS of (4c) is

Fig. 5. Two plane frames which satisfy Maxwell's original rule. (a) is simply sti�, (b) is part redundant and part mechanism.
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Similarly for the LHS of (4c)

Thus (a) obeys Maxwell's rule in both algebraic and symmetric forms.
Considering only motions in the plane, frame (b) has Cs symmetry with operations fE, sg; the

character table for Cs is shown in Table 4. The RHS of (4c) is

Similarly for the LHS of (4c)

The conclusion is that (b) must have at least one state of self stress (of symmetry A 0) and one
mechanism (of symmetry A 00). These are in fact the only indeterminacies of the system and so the
description arising from (4) characterises fully both frames (a) and (b).

These examples also illustrate the point alluded to earlier. It is not always necessary to use the full

Table 3

Character table for C2

C2 E C2

A 1 1

B 1 ÿ1

Table 4

Character table for Cs

Cs E s

A 0 1 1

A 00 1 ÿ1
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point group of a system to extract this information. The full symmetries of frames (a) and (b) are C2h

and C2v respectively, but in-plane motions are totally symmetric under the horizontal mirror of C2h and
C2v, and so all useful information is given by calculations within the appropriate subgroups. The same
motivation underlies our use of C3v rather than D3h symmetry in Sections 2.1 to 2.3.

3.2. Deltahedral frames

One well known special case of Maxwell's algebraic rule is the deltahedron, a polyhedron made up
solely of triangular faces. Given Euler's theorem connecting the number of edges e, vertices v and faces f
of a polyhedra, u� f � e� 2, and the identity 3f � 2e that applies when all faces are triangular, the
vertex (joint) and edge (bar) counts of a deltahedron must satisfy e � 3uÿ 6 and hence (1a). This is a
necessary condition for rigidity of the deltahedral frame. Convexity is one example of an additional
condition that would be su�cient to enforce rigidity (Cauchy, 1813), though the existence of rigid
`dimpled' deltahedra shows that it is not the only one. The symmetry counterpart of (1a) in terms of
permutation representations of vertices and edges is

G�e� � G�u� 
 G�T� ÿ G�T� ÿ G�R�

which is a theorem that has been proved in the context of vibrations of deltahedral molecules
(Ceulemans and Fowler, 1994). Eqn (3) is also therefore satis®ed by all deltahedral frames.

For an example of how the symmetry theorem applies to non-rigid deltahedra, consider some
modi®cations of the icosahedron considered by Calladine (1979). The bars of a regular convex
icosahedral frame span

G�b� � Ag � Gg � 2Hg � T1u � T2u � Gu �Hu:

The internal degrees of freedom G� j � � G�T � ÿ G�T � ÿ G�R� span the self-same representation and
indeed the frame is rigid.

If now one vertex of the icosahedron is pushed radially inwards, with simultaneous lengthening of the
®ve bars in contact with it, the symmetry drops to C5v and the bar representation becomes

G�b� � 5A1 � A2 � 6E1 � 6E2

which is still equisymmetric with G� j � 
 G�T � ÿ G�T � ÿ G�R� and so obeys (3). However, at the point on
the distortion pathway where the depressed joint becomes coplanar with its ®ve neighbours, the
structure gains a mechanism: the central joint in the large planar face may move in®nitesimally in and
out without requiring any change to ®rst order in bar lengths. The mechanism is totally symmetric
under the operations of C5v, and by (4) must be accompanied by a state of self stress of the same
symmetry, G�m� � G�s� � A1.

If the central vertex is pushed in further, to give a pentagonally pyramidal dimple, the bars can
shorten again, the symmetry remains C5v, and (4) remains true, though s and m have both dropped back
to zero. Thus neither algebraic nor symmetry versions give a hint of the indeterminacy that arises for
special geometries within the same overall icosahedral topology. To ®nd this a full structural analysis is
needed, to identify the rank-de®cient blocks of the equilibrium matrix.

3.3. Tensegrity structures

Calladine (1978) used the extended Maxwell's rule (2) to analyse a number of well-known tensegrity
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structures that are illustrated in the book by Marks (1960). Table 5 reproduces the salient features of
Calladine's results, and adds the results of an analysis based on the symmetry Maxwell rule, (4).

4. Conclusion

A symmetry extension of Maxwell's rule can give more speci®c information on rigidity, states of self
stress and mechanisms than the traditional algebraic formulation. It uses the tools of applied point
group theory, which were not available when Maxwell enunciated his rule, but otherwise follows his line
of reasoning exactly. The new, stronger version of the rule is easy to apply, requiring only consultation
of a character table and counting of structural components shifted and unshifted by symmetry
operations.
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